Selective Visual Attention in Electronic Video Surveillance

James Mountstephens, Craig Bennett, Khurshid Ahmad

Abstract

In this paper we describe how a model of selective visual attention, driven entirely by visual features might be used to attend to “unusual” events in a complex surveillance environment. For the purposes of illustration and elaboration we have used an implementation of an early processing model of attention (due to Itti and Koch [1]) to process ground-truth surveillance video data [2].

References

  1. Itti, L. and Koch, C. (2001), “Computational Modelling of Visual Attention”, Nature Reviews Neuroscience, Vol. 2(3), pp 194 - 203.
  2. Fisher, R. (2004). “The PETS04 Surveillance Ground-Truth Data Sets”, Proc. Sixth IEEE Int. Work. on Performance Evaluation of Tracking and Surveillance, pp 1-5.
  3. Eysenck, M. W. (Ed.) (1990), The Blackwell Dictionary of Cognitive Psychology. Oxford : Blackwell Reference, 1990.
  4. Haritaoglu, I., Harwood, D. and Davis, L. S. (2000), “W4: Real-Time Surveillance of People and their Activities”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22(8), pp 809 - 830.
  5. Foresti, G. L., Marcenaro, L., and Regazzoni, C. S. (2002), “Automatic Detection and Indexing of Video-Event Shots for Surveillance Applications”, IEEE Transactions on Multimedia, Vol. 4(4), pp 459 - 471.
  6. Aggarwal, J., Cai, Q. (1997), “Human Motion Analysis: a Review”. Proc. IEEE Nonrigid and Articulated Motion Workshop, pp 90 - 102.
  7. Gavrila, D. (1999), “The Visual Analysis of Human Movement: a Survey”, Vision and Image Understanding, Vol. 73(1), pp 82 - 98.
  8. Itti, L. (2003), “Visual Attention”, In M. A Arbib,. (Ed), The Handbook of Brain Theory and Neural Networks, 2nd Ed. MIT Press, pp. 1196-1201.
  9. Rittscher, J., Blake, A., Hoogs, A. and Stein, G., (2003), “Mathematical Modelling of Animate and Intentional Motion”, Philosophical Transactions: Biological Sciences. Vol. 358(1431), pp 475 -490
  10. Marr, D. (1980), “Visual Information Processing: the Structure and Creation of Visual Representations”. Philosophical Transactions of the Royal Society of London B, 290: pp. 199 - 218.
  11. Ullman, S. (1984), “Visual Routines”, Cognition, Vol. 18, pp 97 - 159.
  12. http://ilab.usc.edu/bu. Last accessed 17-03-05.
  13. Wolfe, J. (1998), “Visual Search: a Review”. Attention, H. Pashler (Ed.), London UK: University College Press.
  14. Tsotsos, J. K. , Culhane, S.M., Wai, W. Y. K., Lai, Y. H., Davis, N. & Nuflo, F. (1995), “Modelling Visual-Attention via Selective Tuning”, Artificial Intelligence, Vol. 78 (1-2), pp 507-45.
  15. Itti, L., Koch, C., Niebur, E. (1998), “A Model of Saliency-Based Visual Attention for Rapid Scene Analysis”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20(11), pp 1254-1259.
  16. Navalpakkam, V., and Itti, L. (2002), “A Goal Oriented Attention Guidance Model”, Lecture Notes in Computer Science, Vol. 2525, pp. 453-461.
  17. Koch, C, Ullman, S. (1985), “Shifts in Selective Visual Attention: Towards the Underlying Neural Circuitry”. Hum Neurobiol, Vol 4(4), pp 219 - 227.
  18. Treisman, A. M., Gelade, G. (1980), “A Feature-Integration Theory of Attention”, Cognit Psychol, Vol. 12(1), 97-136.
  19. Itti, L., Koch, C. (2001), “Feature Combination Strategies for Saliency-Based Visual Attention Systems”, Journal of Electronic Imaging, Vol. 10(1), pp. 161-169.
  20. Itti, L. (2000), “Models of Bottom-Up and Top-Down Visual Attention”, PhD thesis, California Institute of Technology.
  21. Itti, L. Dhavale, N. Pighin, F. (2003), “Realistic Avatar Eye and Head Animation Using a Neurobiological Model of Visual Attention”, Proc. SPIE 48th Annual International Symposium on Optical Science and Technology, pp. 64-78.
  22. http://www.dai.ed.ac.uk/homes/rbf/CAVIAR/. Last accessed 17-03-05.
  23. Ahmad, K., Tariq, M., Vrusias, B. and Handy C. (2003), “Corpus-Based Thesaurus Construction for Image Retrieval in Specialist Domains”. In (Ed). Fabrizio Sebastiani. Proc 25th European Conf on Inf. Retrieval Research (ECIR-03, Pisa, Italy) LNCS-2633. Heidelberg: Springer Verlag. pp 502-510.
  24. www.computing.surrey.ac.uk/ai/reveal/. Last accessed 17-03-05.
Download


Paper Citation


in Harvard Style

Mountstephens J., Bennett C. and Ahmad K. (2005). Selective Visual Attention in Electronic Video Surveillance . In Proceedings of the 5th International Workshop on Pattern Recognition in Information Systems - Volume 1: PRIS, (ICEIS 2005) ISBN 972-8865-28-7, pages 198-203. DOI: 10.5220/0002563501980203


in Bibtex Style

@conference{pris05,
author={James Mountstephens and Craig Bennett and Khurshid Ahmad},
title={Selective Visual Attention in Electronic Video Surveillance},
booktitle={Proceedings of the 5th International Workshop on Pattern Recognition in Information Systems - Volume 1: PRIS, (ICEIS 2005)},
year={2005},
pages={198-203},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002563501980203},
isbn={972-8865-28-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Workshop on Pattern Recognition in Information Systems - Volume 1: PRIS, (ICEIS 2005)
TI - Selective Visual Attention in Electronic Video Surveillance
SN - 972-8865-28-7
AU - Mountstephens J.
AU - Bennett C.
AU - Ahmad K.
PY - 2005
SP - 198
EP - 203
DO - 10.5220/0002563501980203