WEB USAGE MINING USING ROUGH AGGLOMERATIVE CLUSTERING

Pradeep kumar, P. Radha Krishna, Supriya kumar De, S Bapi Raju

Abstract

Tremendous growth of the web world incorporates application of data mining techniques to the web logs. Data Mining and World Wide Web encompasses an important and active area of research. Web log mining is analysis of web log files with web pages sequences. Web mining is broadly classified as web content mining, web usage mining and web structure mining. Web usage mining is a techniques to discover usage patterns from Web data, in order to understand and better serve the needs of Web-based applications. This paper demonstrates a rough set based upper similarity approximation method to cluster the web usage pattern. Results were presented using clickstream data to illustrate our technique.

References

  1. Jhoshi, A. and Krishnapuram , R., “ Robust fuzzy clustering methods to support web mining, proceedings of the workshop on Data Mining and Knowledge Discovery, SIGMOD 78 98, Seattle, pp. 15/1 - 15/8, June 1998.
  2. Bezdek, J, C,. Pattern recognition and fuzzy objective function algorithms, plenum Press , New York 1981.
  3. Hogo, M., Snorek, M. and Lingras, P., Temporal versus latest snapshot web usage mining using kohonen som and modified kohonen som based on the properties of rough sets theory , international journal on artificial intelligence tools, vol. 13, no. 3 (2004) 569-591.
  4. Cooley, R., Web Usage Mining: Discovery and Applications of Interesting Patterns from Web data. PhD thesis,Dept. of Computer Science, University of Minnesota, May 2000.
  5. Spiliopoulou, M. and Faulstich, L, C., WUM: A tool for web utilization analysis. In Extended version of Proc.EDBT Workshop WebDB'98, pages 184-203. Springer Verlag, 1999.
  6. Mannila, H. and Meek, C., Global partial orders from sequential data. In Proc. 6th Intl. Conf. on KnowledgeDiscovery and Data Mining (KDD2000), pages 161-168, Aug 2000.
  7. Pitkow, J. and Pirolli, P., Mining longest repeating subsequences to predict world wide web surfing. In Proc 2ndUSENIX Symposium on Internet Technologies & Systems (USITS'99), Oct 1999.
  8. Fu, Y., Sandhu, K. and. Shih, M., A generalization-based approach to clustering of web usage sessions. In Dash, M., Huan, L., Peter, S., KianLee, T.: Fast Hierarchical Clustering and its Validation, Data and Knowledge Engineering. 44(1) (2003) 109-138.
  9. De, S, K., Radha Krishna, P.: Mining web data using clustering technique for web personalization, Int. Jour. of Computational Intelligence and Applications, 2(3) (2002) 255-265.
  10. De, S.K., Radha Krishna, P.: Clustering web transactions using rough approximation, Fuzzy Sets and Systems (2004) (In print).
  11. Jamil, S., Jitender, S,D. : Concept Approximations Based on Rough Sets and similarity Measures, International Journal on Applied Mathematics and Computer Science,2001,Vol.11,No.3,655 - 674.
  12. Pawlak, Z., Rough Sets, International Journal of Computer and Information Sciences, 11 (1982) 341- 356.
  13. Perkowitz, M., Etzioni, O.: Towards adaptive web sites: Conceptual framework and case study, Artificial Intelligence, 118 (2000) 245-275.
  14. Spiliopoulou, M.: Data mining for the web, In Principles of Data Mining and Knowledge Discovery, Second European Symposium, PKDD'99, (1999) 588- 589.
  15. Manco, G., Ortale, R., and Sacca, D., Similarity-based clustering of Web transactions, Symposium on Applied Computing, Proceedings of the 2003 ACM symposium on Applied computing pp. 1212 - 1216
Download


Paper Citation


in Harvard Style

kumar P., Radha Krishna P., kumar De S. and Bapi Raju S. (2005). WEB USAGE MINING USING ROUGH AGGLOMERATIVE CLUSTERING . In Proceedings of the Seventh International Conference on Enterprise Information Systems - Volume 2: ICEIS, ISBN 972-8865-19-8, pages 315-320. DOI: 10.5220/0002553003150320


in Bibtex Style

@conference{iceis05,
author={Pradeep kumar and P. Radha Krishna and Supriya kumar De and S Bapi Raju},
title={WEB USAGE MINING USING ROUGH AGGLOMERATIVE CLUSTERING},
booktitle={Proceedings of the Seventh International Conference on Enterprise Information Systems - Volume 2: ICEIS,},
year={2005},
pages={315-320},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002553003150320},
isbn={972-8865-19-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Seventh International Conference on Enterprise Information Systems - Volume 2: ICEIS,
TI - WEB USAGE MINING USING ROUGH AGGLOMERATIVE CLUSTERING
SN - 972-8865-19-8
AU - kumar P.
AU - Radha Krishna P.
AU - kumar De S.
AU - Bapi Raju S.
PY - 2005
SP - 315
EP - 320
DO - 10.5220/0002553003150320