FUZZY PATTERN RECOGNITION BASED FAULT DIAGNOSIS

Rafik Bensaadi, Hayet Mouss, Nadia Mouss

Abstract

In order to avoid catastrophic situations when the dynamics of a physical system (entity in a M.A.S architecture) are evolving toward an undesirable operating mode, particular and quick safety actions have to be programmed in the control design. Classic control (PID and even state model based methods) becomes powerless for complex plants (nonlinear, MIMO and ill-defined systems). A more efficient diagnosis requires an artificial intelligence approach. We propose in this paper the design of a Fuzzy Pattern Recognition System (FPRS) that solves, in real time, the main following problems:  Identification of an actual state,  Identification of an eventual evolution towards a failure state,  Diagnosis and decision-making.

References

  1. Mogens Blanke, Michel Kinnaert, Jan Lunze and Marcel Staroswiecki, 2003. Diagnosis and fault tolerant control, Berlin: Springer.
  2. L. H. Chiang, E .L. Russell and R. D. Braatz, Fault 2001. Detection and Diagnosis in Industrial Systems, London: Springer.
  3. J. C. Bezdek, 1996. a review of probabilistic, fuzzy, and neural models for pattern recognition. In C. H. Chen (ed), Fuzzy logic and neural network handbook, chapter 2, New York: McGraw Hill.
  4. L. A. Zadeh, 1965. Fuzzy sets. Information and Control, vol. 8, pp. 338-353.
  5. L. A. Zadeh, 1973. Outline of a new approach to the analysis of complex systems and decision processes', IEEE Trans. Syst., Man, Cybern., vol. SMC-3, no. 1, pp. 28-44, jan.
  6. S. Zieba, 1995. Une méthode de suivi d'un système évolutif. Application au diagnostic de la qualité d'usinage, Thèse de doctorat, Université de Technologie de Compiègne, juin.
  7. Takeshi Yamakawa 1993. A Fuzzy Inference Engine in Nonlinear Analog Mode and Its Application to a Fuzzy Logic Control. IEEE trans. on Neural Networks, vol. 4, no. 3, pp. 496-522, May.
  8. I. S. Torsum, , 1995 Foundations of Intelligent Knowledge-Based Systems, London: Academic Press.
  9. Bernard Dubuisson, Diagnostic et reconnaissance des formes, Paris: Hermès, 1990.
  10. Jonathan Richard Shewchuk, 1994. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain (e-article), August.
  11. Jeffrey T. Spooner, Manfredi Maggiore, Raúl Ordóñez and Kevin M. Passino, Stable 1996. Adaptive Control and Estimation for Nonlinear Systems. -Neural and Fuzzy Approximator Techniques, New York: John Wiley and sons, Inc.
  12. David J. DeFatta, Joseph G. Lucas and William S. Hodgkiss, 1988. Digital Signal Processing: A System Design Approach, New York: John Wiley and sons, Inc.
Download


Paper Citation


in Harvard Style

Bensaadi R., Mouss H. and Mouss N. (2005). FUZZY PATTERN RECOGNITION BASED FAULT DIAGNOSIS . In Proceedings of the Seventh International Conference on Enterprise Information Systems - Volume 2: ICEIS, ISBN 972-8865-19-8, pages 347-356. DOI: 10.5220/0002510403470356


in Bibtex Style

@conference{iceis05,
author={Rafik Bensaadi and Hayet Mouss and Nadia Mouss},
title={FUZZY PATTERN RECOGNITION BASED FAULT DIAGNOSIS},
booktitle={Proceedings of the Seventh International Conference on Enterprise Information Systems - Volume 2: ICEIS,},
year={2005},
pages={347-356},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002510403470356},
isbn={972-8865-19-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Seventh International Conference on Enterprise Information Systems - Volume 2: ICEIS,
TI - FUZZY PATTERN RECOGNITION BASED FAULT DIAGNOSIS
SN - 972-8865-19-8
AU - Bensaadi R.
AU - Mouss H.
AU - Mouss N.
PY - 2005
SP - 347
EP - 356
DO - 10.5220/0002510403470356