A Support System for Fisheries Based on Neural Networks

Alfonso Iglesias, Bernardino Arcay, Alejandra Rodríguez, Manuel Cotos

Abstract

This paper presents the foundations of a decision support system for the localisation of fisheries based on AI techniques. The purpose of such a system is to reduce the costs of fishing fleets without endangering the sustainable development of the natural resources. Our data sources are satellite images (OrbView-2, Series NOAA, Topex/Poseidon), as well as real catch data obtained from the fishing log of a pilot boat. We have compared neural networks, ANFIS, and functional networks, and we have exported the results to a SIG. The best results were obtained for a perceptron trained with the Backpropagation method.

References

  1. Triñanes J. A.. Sistema de información basado en tededetección para ayuda a la explotación operacional de pesquerías de túnidos y otras especies pelágicas. Tesis doctoral. Departamento Electrónica e Computación, Universidad de Santiago. (Febrero 1998)
  2. Iglesias A. Sistema de apoyo a la explotación operacional de pesquerías basado en técnicas de inteligencia artificial y teledetección. Departamento de Electrónica y Computación, Facultad de Física, Universidad de Santiago de Compostela. (Mayo 2003)
  3. Cotos J. M. Dinámica y clasificación de estructuras oceánicas para aplicación operacional de pesquerías utilizando teledetección e ingeniería de conocimiento. Tesis doctoral. Departamento de Física Aplicada, Facultad de Física, Universidad de Santiago de Compostela. (Septiembre 1994)
  4. Wells W. M. Efficient Synthesis of Gaussian Filters by Cascaded Uniform Filters. IEEE Trans. Pattern Analysis and Machine Intelligence-9 No. 2 March 1986.
  5. Harlow C. A., Trivedi M. M., y Conners R. W. Use of texture operators in segmentation. Optical Engineering, vol. 25 , no. 11, pp. 1200-1206, Nov. (1986)
  6. Komatsu T., Aoki I., Mitani I., y Ishii T. Prediction o the Catch o Japanese Sardine Larvae in Sagami Bay Using a Neural Network. Fisheries Science 60(4),385-391 (1994).
  7. Aurelle D., Lek S., Giraudel J., Berrebi P. Microsatellites and artificial neural networks: tools for the discrimination between natural and hatchery brown trout (Salmo trutta, L.) in Atlantic populations. Ecological Modelling 120 313-324. (1999)
  8. Dreyfus-Leon M. J. Individual-based modelling of fishermen search behauviour with neural networks and reinforcement learning. Ecological Modelling 120 287-297. (1999)
  9. Aussem A., Hill D.. Neural-network metamodelling for the prediction of Caulerpa taxifolia development in the Mediterranean sea. Neurocomputing 30 ; 71-78 (2000)
  10. Brosse S., Guegan J., Tourenq J., Lek S.. The use of artificial neural network to assess fish abundance and spacial occupancy in the litoral zone of a mesotropic lake. Ecological Modelling 120:299-311. (1999)
  11. Maas O., Boulanger J., Thiria S. Use of neural networks for predictions using time series: Illustration with the El Niño Southern oscillation phenomenon”. Neurocomputing 30: 53- 58. (2000)
  12. Specht D. F. Probabilistic Neural Networks. Neural Networks, 3,109-118. (1990)
  13. Zhang Q. and Benveniste A. Wavelet Neural Networks. IEEE Transactions on Neural Networks, 3, 889-898.
  14. Castillo E. and Gutiérrez J.M. Nonlinear Time Series Modeling and Prediction Using Functional Networks. Extracting Information Masked by Chaos. Physics Letters A, Vol. 244, 71-84 (1998).
  15. Castillo E., Cobo A., Gutiérrez J.M., and Pruneda E. Introduction to Functional Networks with Applications. A Neural Based Paradigm. Kluwer International Publishers (1999).
  16. Takagi T. y Sugeno M.. Derivation of fuzzy control rules from human operators control actions. Proc. Of the IFAC Symp. On Fuzzy Information, Knowledge Representation and Decision Analysis, pages 55-60. (July 1983)
  17. Jang J.-S.R. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst., Man., Cybern, vol.23, no.5, pp. 665-685. (1993)
  18. Gorman R. P. y Sejnowski, T. J. Learned Classification of Sonar Targets Using a Massively Parallel Network. IEEE Transactions on Acoustics, Speech, and Signal Processing. 36:1135-1140. (1998)
  19. Rumelhart D.E., Hinton, G. E. y Williams, R. J. Learning internal representations by errors propagation. In Parallel distributed processing: Explotations in the microstructure of cognitron. Vol. 1. D.E. Rumelhart and J.L. Mac Clelland, Cap. 8. MIT Press. (1986)
  20. Iglesias A., B. Arcay, J.M. Cotos. Optimisation of fishing predictions by means of Artificial Neural Networks, ANFIS, Functional Networks and Remote Sensing images. Expert Systems with Applications. Aceptado y pendiente de publicación.
Download


Paper Citation


in Harvard Style

Iglesias A., Arcay B., Rodríguez A. and Cotos M. (2005). A Support System for Fisheries Based on Neural Networks . In Proceedings of the 1st International Workshop on Artificial Neural Networks and Intelligent Information Processing - Volume 1: ANNIIP, (ICINCO 2005) ISBN 972-8865-36-8, pages 112-121. DOI: 10.5220/0001194401120121


in Bibtex Style

@conference{anniip05,
author={Alfonso Iglesias and Bernardino Arcay and Alejandra Rodríguez and Manuel Cotos},
title={A Support System for Fisheries Based on Neural Networks},
booktitle={Proceedings of the 1st International Workshop on Artificial Neural Networks and Intelligent Information Processing - Volume 1: ANNIIP, (ICINCO 2005)},
year={2005},
pages={112-121},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001194401120121},
isbn={972-8865-36-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 1st International Workshop on Artificial Neural Networks and Intelligent Information Processing - Volume 1: ANNIIP, (ICINCO 2005)
TI - A Support System for Fisheries Based on Neural Networks
SN - 972-8865-36-8
AU - Iglesias A.
AU - Arcay B.
AU - Rodríguez A.
AU - Cotos M.
PY - 2005
SP - 112
EP - 121
DO - 10.5220/0001194401120121