Hybrid Strategy for Automatic Stellar Classification

Alejandra Rodríguez, Carlos Dafonte, Bernardino Arcay, Iciar Carricajo, Minia Manteiga

Abstract

This paper describes an hybrid approach to the unattended classification of optical spectra of stars. The classification of stars in the standard MK system constitutes an important problem in the Astrophysics area, since it helps to carry out proper stellar evolution studies. Manual methods, based on the visual study of stellar spectra, have been frequently and successfully used by researchers for many years, but they are no longer viable because of the spectacular advance of the objects collection technologies, which gather a huge amount of spectral data in a relatively short time. We therefore propose a cooperative system that is capable of classifying stars automatically and efficiently, by applying to each spectrum the most appropriate method or combined methods, which guarantees a reliable, consistent and adapted classification. Our final objective is the integration of several artificial intelligence techniques in a unique hybrid system.

References

  1. Zombeck, M.V.: Handbook of Astronomy and Astrophysics. 2nd. ed. Cambridge University Press (1990).
  2. Morgan, W.W., Keenan, P.C., Kellman, E.: An Atlas of Stellar Spectra with an outline of Spectral Classification. University of Chicago Press (1943)
  3. Silva, D.R., Cornell, M.E.: A New Library of Stellar Optical Spectra. The Astrophysical Journal Suppl. 81(2), (1992) 865-881.
  4. Pickles, A.J.: A Stellar Spectral Flux Library. 1150-25000 A, Publications of the Astronomical Society of the Pacific. 110, (1998) 863-878.
  5. Jacoby, G. H., Hunter, D.A., Christian, C.A.: A Library of Stellar Spectra. The Astrophysical Journal Suppl, 56, (1984) 257-281.
  6. Stuttgart Neural Network Simulator. http://www-ra.informatik.uni-tuebingen.de/SNNS/. (2001).
  7. Hahn, B.: Essential MATLAB for Scientists and Engineers. University of Cape Town (2002).
  8. Forgy, C.L.: The OPS User's Manual, System Version 2.2. Production Systems Technologies Inc. (1986).
  9. Valette-Florence, P.: Introduction to Means-End Chain Analysis. Rech. Appl. Mark, 9, (1994) 93-117.
  10. Buchanan, B., Shortliffe, E.: Ruled-based Expert Systems. Adisson-Wesley (1984).
  11. Mendel, J.M. Fuzzy Logic Systems for Engineering: A Tutorial. Proceedings of the IEEE, 83(3), (1995) 345-377.
  12. Haykin, S.: Neural Networks. A Comprehensive Foundation. MacMillan College Pub (1994).
  13. Kohonen, T.: Self-Organizing Maps ,3. ed. Springer (2001).
  14. Kaufman, L., Rousseuw, P.J.: Finding Groups in Data. John Wiley (1990).
Download


Paper Citation


in Harvard Style

Rodríguez A., Dafonte C., Arcay B., Carricajo I. and Manteiga M. (2005). Hybrid Strategy for Automatic Stellar Classification . In Proceedings of the 1st International Workshop on Artificial Neural Networks and Intelligent Information Processing - Volume 1: ANNIIP, (ICINCO 2005) ISBN 972-8865-36-8, pages 62-71. DOI: 10.5220/0001194300620071


in Bibtex Style

@conference{anniip05,
author={Alejandra Rodríguez and Carlos Dafonte and Bernardino Arcay and Iciar Carricajo and Minia Manteiga},
title={Hybrid Strategy for Automatic Stellar Classification},
booktitle={Proceedings of the 1st International Workshop on Artificial Neural Networks and Intelligent Information Processing - Volume 1: ANNIIP, (ICINCO 2005)},
year={2005},
pages={62-71},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001194300620071},
isbn={972-8865-36-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 1st International Workshop on Artificial Neural Networks and Intelligent Information Processing - Volume 1: ANNIIP, (ICINCO 2005)
TI - Hybrid Strategy for Automatic Stellar Classification
SN - 972-8865-36-8
AU - Rodríguez A.
AU - Dafonte C.
AU - Arcay B.
AU - Carricajo I.
AU - Manteiga M.
PY - 2005
SP - 62
EP - 71
DO - 10.5220/0001194300620071