PIECEWISE AFFINE SYSTEMS CONTROLLABILITY AND HYBRID OPTIMAL CONTROL

Aude Rondepierre

Abstract

We consider a particular class of hybrid systems, defined by a piecewise affine dynamic over non-overlapping regions of the state space. We want to control their behaviors so that it reaches a target by minimizing a given cost. We provide a new numerical algorithm under-approximating the controllable domain under the given hybrid dynamic. Given an optimal sequence of states of the hybrid automaton, we are then able to traverse the automaton till the target, locally insuring optimality.

References

  1. Bardi, M. and Capuzzo-Dolcetta, I. (1997). Optimal Control and Viscosity Solutions of Hamilton-JacobiBellman Equations. Birkauser.
  2. Bellman, R. (1957). Dynamic Programming. Princeton University Press.
  3. Bertsekas, R. (1984). Dynamic Programming and Optimal Control. Athena Scientific.
  4. Bonnans, J. and Maurin, S. (2000). An implementation of the shooting algorithm for solving optimal control problems. Technical Report RT-0240, INRIA.
  5. Bryson, A. and Ho, Y. (1975). Applied Optimal Control. Hemisphere.
  6. Clarke, F. H. (1990). Optimization and Nonsmooth Analysis. SIAM Classics in Applied Mathematics.
  7. Dumas, J.-G. and Rondepierre, A. (2003). Modeling the electrical activity of a neuron by a continuous and piecewise affine hybrid system. In Proceedings of the 2003 Hybrid Systems: Computation and Control.
  8. Dumas, J.-G. and Rondepierre, A. (2005). Algorithms for symbolic/numeric control of affine dynamical systems. In Proceedings of the 2005 International Symposium on Symbolic and Algebraic Computation.
  9. Fierro, R., Das, A. K., V.Kumar, and Ostrowski, J. P. (2001). Hybrid control of formations of robots.
  10. Girard, A. (2004). Analyse Algorithmique des Systèmes hybrides. PhD thesis, Institut National Polytechnique, Grenoble.
  11. Johansson, M. (1999). Piecewise Linear Control Systems. PhD thesis, Lund Institute of Technology.
  12. Pesch, H. (1994). A practical guide to the solutions of reallife optimal control problems. Parametric Optimization. Control Cybernet.
  13. Pinch, E. (1993). Optimal Control and the Calculus of Variations. Oxford University Press.
  14. Pontryagin, L., Boltiansky, V., Gamkrelidze, R., and Michtchenko, E. (1974). Théorie mathématique des processus optimaux. Editions de Moscou.
  15. Rondepierre, A. and Dumas, J.-G. (2005). Algorithms for hybrid optimal control. Technical report, IMAG-ccsd00004191, arXiv math.OC/0502172.
  16. Zhang, J., Johansson, K., Lygeros, J., and Sastry, S. (2001). Zeno hybrid systems. International Journal of Robust and Nonlinear Control.
  17. 2Work in progress, see (Rondepierre and Dumas, 2005)
Download


Paper Citation


in Harvard Style

Rondepierre A. (2005). PIECEWISE AFFINE SYSTEMS CONTROLLABILITY AND HYBRID OPTIMAL CONTROL . In Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO, ISBN 972-8865-31-7, pages 294-299. DOI: 10.5220/0001185802940299


in Bibtex Style

@conference{icinco05,
author={Aude Rondepierre},
title={PIECEWISE AFFINE SYSTEMS CONTROLLABILITY AND HYBRID OPTIMAL CONTROL},
booktitle={Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,},
year={2005},
pages={294-299},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001185802940299},
isbn={972-8865-31-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,
TI - PIECEWISE AFFINE SYSTEMS CONTROLLABILITY AND HYBRID OPTIMAL CONTROL
SN - 972-8865-31-7
AU - Rondepierre A.
PY - 2005
SP - 294
EP - 299
DO - 10.5220/0001185802940299