MULTILAYER PERCEPTRON FUNCTIONAL ADAPTIVE CONTROL FOR TRAJECTORY TRACKING OF WHEELED MOBILE ROBOTS

Marvin K. Bugeja, Simon G. Fabri

Abstract

Sigmoidal multilayer perceptron neural networks are proposed to effect functional adaptive control for handling the trajectory tracking problem in a nonholonomic wheeled mobile robot. The scheme is developed in discrete time and the multilayer perceptron neural networks are used for the estimation of the robot’s nonlinear kinematic functions, which are assumed to be unknown. On-line weight tuning is achieved by employing the extended Kalman filter algorithm based on a specifically formulated multiple-input, multiple-output, stochastic model for the trajectory error dynamics of the mobile base. The estimated functions are then used on a certainty equivalence basis in the control law proposed in (Corradini et al., 2003) for trajectory tracking. The performance of the system is analyzed and compared by simulation.

References

  1. Asensio, J. R. and Montano, L. (2002). A kinematic and dynamic model-based motion controller for mobile robots. In Proc. 15th IFAC World Congress on Automatic Control (b'02), Barcelona, Spain.
  2. Bellman, R. (1961). Adaptive Control Processes: A Guided Tour. Princeton University Press, Princeton, NJ.
  3. Corradini, M. L., Ippoliti, G., and Longhi, S. (2003). Neural networks based control of mobile robots: Development and experimental validation. Journal of Robotic Systems, 20(10):587-600.
  4. Corradini, M. L. and Orlando, G. (2001). Robust tracking control of mobile robots in the presence of uncertainties in the dynamic model. Journal of Robotic Systems, 18(6):317-323.
  5. Ding, D. and Cooper, R. A. (2005). Electric-powered wheelchairs. IEEE Control Systems Magazine, 25(2):22-34.
  6. Fabri, S. G. and Kadirkamanathan, V. (1998). Dual adaptive control of nonlinear stochastic systems using neural networks. Automatica, 34(2):245-253.
  7. Fabri, S. G. and Kadirkamanathan, V. (2001). Functional Adaptive Control: An Intelligent Systems Approach. Springer-Verlag, London, UK.
  8. Fierro, R. and Lewis, F. L. (1995). Control of a nonholonomic mobile robot: Backstepping kinematics into dynamics. In Proc. 34th Conference on Decision and Control (CDC'95), pages 3805-3810, New Orleans, LA.
  9. Fierro, R. and Lewis, F. L. (1997). Robust practical point stabilization of a nonholonomic mobile robot using neural networks. Journal of Intelligent and Robotic Systems, 20:295-317.
  10. Fierro, R. and Lewis, F. L. (1998). Control of a nonholonomic mobile robot using neural networks. IEEE Trans. Neural Networks, 9(4):589-600.
  11. Ge, S. S., Lee, T. H., and Harris, C. J. (1999). Adaptive Neural Network Control of Robotic Manipulators, volume 19 of World Scientific Series in Robotics and Intelligent Systems. World Scientific Publishing Co Pte Ltd, USA.
  12. Grech, R. and Fabri, S. G. (2004). Trajectory tracking of a differentially driven wheeled mobile robot in the presence of obstacles. In Proc. 12th Mediterranean Conference on Control and Automation (MED'04), Izmir, Turkey.
  13. Haykin, S. (1999). Neural Networks: A Comprehensive Foundation, chapter 5. Prentice Hall, London, UK.
  14. Julier, S. J. and Uhlmann, J. K. (1997). A new extention of the Kalman filter to nonlinear systems. In Proc. of AeroSense: The 11th Int. Symp. on Aerospace/Defence Sensing, Simulation and Controls.
  15. Lewis, F. L., Jagannathan, S., and Yesildirek, A. (1999). Neural Network Control of Robot Manipulators and Nonlinear Systems. Taylor and Francis, Padstow, UK.
  16. Maybeck, P. S. (1979). Stochastic Models, Estimation and Control, volume 141-1 of Mathematics in Science and Engineering. Academic Press Inc., London, UK.
  17. Narendra, K. S. and Parthasarathy, K. (1990). Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Networks, 1(1):4-27.
  18. Oriolo, G., Luca, A. D., and Vendittelli, M. (2002). WMR control via dynamic feedback linearization: Design, implementation and experimental validation. IEEE Trans. Contr. Syst. Technol., 10(6):835-852.
  19. Poggio, T. and Girosi, F. (1990). Networks for approximation and learning. Proc. IEEE, 78(9):1481-1497.
Download


Paper Citation


in Harvard Style

K. Bugeja M. and G. Fabri S. (2005). MULTILAYER PERCEPTRON FUNCTIONAL ADAPTIVE CONTROL FOR TRAJECTORY TRACKING OF WHEELED MOBILE ROBOTS . In Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics - Volume 4: ICINCO, ISBN 972-8865-30-9, pages 66-72. DOI: 10.5220/0001182200660072


in Bibtex Style

@conference{icinco05,
author={Marvin K. Bugeja and Simon G. Fabri},
title={MULTILAYER PERCEPTRON FUNCTIONAL ADAPTIVE CONTROL FOR TRAJECTORY TRACKING OF WHEELED MOBILE ROBOTS},
booktitle={Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics - Volume 4: ICINCO,},
year={2005},
pages={66-72},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001182200660072},
isbn={972-8865-30-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics - Volume 4: ICINCO,
TI - MULTILAYER PERCEPTRON FUNCTIONAL ADAPTIVE CONTROL FOR TRAJECTORY TRACKING OF WHEELED MOBILE ROBOTS
SN - 972-8865-30-9
AU - K. Bugeja M.
AU - G. Fabri S.
PY - 2005
SP - 66
EP - 72
DO - 10.5220/0001182200660072