A SWITCHING ALGORITHM FOR TRACKING EXTENDED TARGETS

Andreas Kräußling, Frank E. Schneider, Dennis Wildermuth

Abstract

Tracking extended objects like humans in crowded environments is one of the challenges in mobile robotics. Several characteristics must be taken into consideration when evaluating the performance of such a tracking algorithm — e.g. accuracy, the need for computation time and the ability to deal with complex situations like crossing targets. In this paper two different algorithms for tracking extended targets are examined and compared by means of these criterions. One result is that none of the algorithms alone is a sufficient solution to the criterias. Therefore, a switching approach using both algorithms is introduced and tested on real data.

References

  1. Bar-Shalom, Y. and Fortmann, T. (1988). Tracking and Data Association. Academic Press.
  2. Crowley, J. L. (1989). Control of translation and rotation in a robot vehicle. IEEE Iros-II, Tsukuba, Japan.
  3. Dissanayake, G. M. W. M., Newman, P., Clark, S., DurrantWhyte, H., and Csorba, M. (2001). A solution to the simultaneous localization and map building (slam) problem. IEEE Transactions on Robotics and Automation, 17:229-241.
  4. Ekstrand, B. (1983). Analytical steady state solution for a kalman tracking filter. IEEE Trans. Aerospace and Electronic Systems, AES-19:815-819.
  5. Fod, A., Howard, A., and Mataric, M. J. (2002). Laserbased people tracking. In Proceedings of the IEEE Intl. Conf. on Robotics and Automation, pages 3024- 3029.
  6. Forney Jr., G.-D. (1973). The viterbi algorithm. Proceedings of the IEEE, 61(3):268-278.
  7. Fortmann, T. E., Bar-Shalom, Y., and Scheffe, M. (1983). Sonar tracking of multiple targets using joint probabilistic data association. IEEE Journal of Oceanic Engineering, OE-8(3).
  8. Fuerstenberg, K. C., Linzmeier, D. T., and Dietmayer, K. C. J. (2002). Pedestrian recognition and tracking of vehicles using a vehicle based multilayer laserscanner. In Proceedings of IV 2002, Intelligent Vehicles Symposium, volume 1, pages 31-35.
  9. Gordon, N., Salmond, D., and Smith, A. (1993). A novel approach to nonlinear/non-gaussian bayesian state estimation. IEE Proceedings F, 140:107-113.
  10. Guivant, J. and Nebot, E. (2001). Navigation in large outdoor unstructured environments. International Symposium of Robotics Research.
  11. Gutmann, J.-S., Burgard, W., Fox, D., and Konolige, K. (1998). An experimental comparison of localization methods. In International Conference on Intelligent Robots and Systems (IROS 1998), Victoria, Canada.
  12. Gutmann, J.-S. and Fox, D. (2002). An experimental comparison of localisation methods continued. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2002), Lausanne, Switzerland.
  13. Han, J. and Kamber, M. (2001). Data Mining. Academic Press, London.
  14. Kalata, P. R. (1984). The tracking index: A generalized parameter for alpha-beta-gamma target trackers. IEEE Trans. Aerospace and Electronic Systems, AES20:174-182.
  15. Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Trans. ASME, J. Basic Engineering, 82:34-45.
  16. Kräußling, A., Schneider, F. E., and Wildermuth, D. (2004a). Tracking expanded objects using the viterbi algorithm. In Proceedings of the IEEE Conference on Intelligent systems, Varna, Bulgaria.
  17. Kräußling, A., Schneider, F. E., and Wildermuth, D. (2004b). Tracking of extended crossing objects using the viterbi algorithm. In Proceedings of the 1st International Conference on Informatics in Control, Automation and Robotics (ICINCO).
  18. Kräußling, A., Schneider, F. E., and Wildermuth, D. (2005). Zur verfolgung ausgedehnter ziele - eine übersicht über ausgewählte algorithmen und ein vergleich deren güte. Technical report, FKIE/FGAN, Wachtberg, Germany.
  19. Leonard, J. J. and Durrant-Whyte, H. F. (1992). Directed Sonar Sensing for Mobile Robot Navigation. Kluwer Academic Publishers.
  20. Mahalanobis, P. C. (1936). On the generalized distance in statistics. Proceedings of the National Institute of Science, 12:49-55.
  21. Pitt, M. and Shephard, N. (1997). Filtering via simulation: auxiliary particle filters. Journal of the American Statistical Association.
  22. Prassler, E., Scholz, J., and Elfes, E. (1999). Tracking people in a railway station during rush-hour. In Christensen, H. I., editor, Computer Vision Systems, volume 1542, pages 162-179. Springer, lecture notes in computer science edition.
  23. Pulford, G. W. and Scala, B. L. (1995). Over-the-horizon radar tracking algorithm using the viterbi algorithm - third report to high frequency radar division. Technical Report 27/95, Cooperative Research Centre for Sensor Signal and Information Processing, University of Melbourne.
  24. Quach, T. and Farooq, M. (1994). Maximum likelihhod track formation with the viterbi algorithm. In Proceedings of the 33rd Conference on Decision and Control, Lake Buena Vista, Florida.
  25. Reid, D. B. (1979). An algorithm for tracking multiple targets. IEEE Trans. Automatic Control, AC-24:843- 854.
  26. Schulz, D., Burgard, W., Fox, D., and Cremers, A. B. (2001). Tracking multiple moving objects with a mobile robot. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001).
  27. Shumway, R. H. and Stoffer, D. S. (2000). Time Series Analysis and Its Applications. Springer.
  28. Stannus, W., Koch, W., and Kräußling, A. (2004). On robot-borne extended object tracking using the em algorithm. In Proceedings of the 5th Symposium on Intelligent Autonomous Vehicles, Lisbon, Portugal.
  29. Taylor, G. and Kleeman, L. (2004). A multiple hypothesis walking person tracker with switched dynamic model. In Proceedings of the Australasian Conference on Robotics and Automation, Canberra, Australia.
  30. Thrun, S. (1998). Learning metric-topological maps for indoor mobile robot navigation. Artificial Intelligence, 99(1):21-71.
  31. Thrun, S., Fox, D., and Burgard, W. (1999). Markov localization for mobile robots in dynamic environments. Journal of Artificial Intelligence Research, 11:391- 427.
  32. van Keuk, G. (1971). Zielverfolgung nach kalmananwendung auf elektronisches radar. Technical Report 173, Forschungsinstitut f ür Funk und Mathematik, Wachtberg-Werthhoven, Germany.
  33. Viterbi, A. J. (1967). Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions On Information Theory, IT-13(2).
  34. Zhao, H. and Shibasaki, R. (2005). A novel system for tracking pedestrians using multiple single-row laser-range scanners. IEEE Transactions on Systems, Man and Cybernetics-Part A: Systems and Humans, 35(2):283-291.
Download


Paper Citation


in Harvard Style

Kräußling A., E. Schneider F. and Wildermuth D. (2005). A SWITCHING ALGORITHM FOR TRACKING EXTENDED TARGETS . In Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 972-8865-30-9, pages 126-133. DOI: 10.5220/0001173601260133


in Bibtex Style

@conference{icinco05,
author={Andreas Kräußling and Frank E. Schneider and Dennis Wildermuth},
title={A SWITCHING ALGORITHM FOR TRACKING EXTENDED TARGETS},
booktitle={Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2005},
pages={126-133},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001173601260133},
isbn={972-8865-30-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - A SWITCHING ALGORITHM FOR TRACKING EXTENDED TARGETS
SN - 972-8865-30-9
AU - Kräußling A.
AU - E. Schneider F.
AU - Wildermuth D.
PY - 2005
SP - 126
EP - 133
DO - 10.5220/0001173601260133