STATE TRANSFORMATION FOR EULER-LAGRANGE SYSTEMS

M. Mabrouk, J. C. Vivalda

Abstract

The transformation of an Euler-Lagrange system into a state affine system in order to solve some interesting problem as the design of observer, the output tracking control, is considered in this paper. A necessary and a sufficient condition is given as well as a method to compute this transformation.

References

  1. Alberto Isidori. (1989). Non linear control systems. Segond dition & Springer-verlag.
  2. Besancon, G. (2000). Global output feedback tracking control for a class of lagrangian systems. Automatica.36, PP. 1915-1921.
  3. Besancon, G., Battilotti, S., Lanari, L. (1998). State transformation and global output feedback disturbance attenuation for a class of mechanical systems. IEEE Mediterranean control conference, Alghero, Sardinia, Italy, PP. 561-566.
  4. B. d Andra-Novel and J. Lvine. (1990). Modelling and nonlinear control of an overhead crane. In M.A. Kashoek, J.H. van Schuppen, and A.C.M. Rand, editors, Robust Control of Linear and Nonlinear Systems, MTNS89, volume II, pages 523529. BirkhLuser, Boston, 1990.
  5. C. J. Wan, D. S. Bernstein, and V. T. Coppola. (1996). Global stabilization of the oscillating eccentric rotor. Nonlinear dynamics, 10:49-62.
  6. F. Mazenc and J.C. Vivalda. (2002). Global asymptotic output feedback stabilisation of feedforward systems. European journal of Control, vol. 8, no. 6, pp. 519-530.
  7. J-B. Pomet, R. M. Hirschorn, W. A. Cebuhar. (1993). Dynamic output feedback regulation for a class of nonlinear systems. Math Control signals and systems,, 6, pp. 106-124.
  8. J.P. Gauthier and I. Kupka. (1994). obsrvervability and observers for non-linear systems Control and Optimisation,, vol. 32, no. 4, pp. 975-999.
  9. L. Praly and Z.P. Jiang. (1993). Stabilization by output feedback for systems with ISS inverse dynamics Syst. Cont. Lett., vol. 21, pp. 19-33.
  10. Loria, A and Pantely, E. (1999) A separation principle for a class of Euler-Lagrange systems. Lecture Notes in Information Sciences, N244, New directions in nonlinear observer design, Springer Berlin, pp. 229-247.
  11. M. Mabrouk, F. Mazenc and J.C. Vivalda .(2004). On Global Observers for some Mechanical Systems. Proceedings of 2nd IFAC Symposium on System Structure and Control (SSSC), Oaxaca, Mexique, December 2004.
  12. M. Spong and Vidyasagar. (1989). Robot Dynamics and Control, Wiley & Sons, New York.
  13. Z. P. Jiang and I. Kanellakopoulos. (2000). Global outputfeedback tracking via output feedback tracking for a benchmark nonlinear system. IEEE Trans. on automatic Control, 45(5): 1023-1027.
Download


Paper Citation


in Harvard Style

Mabrouk M. and C. Vivalda J. (2005). STATE TRANSFORMATION FOR EULER-LAGRANGE SYSTEMS . In Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics - Volume 4: ICINCO, ISBN 972-8865-30-9, pages 43-48. DOI: 10.5220/0001169200430048


in Bibtex Style

@conference{icinco05,
author={M. Mabrouk and J. C. Vivalda},
title={STATE TRANSFORMATION FOR EULER-LAGRANGE SYSTEMS},
booktitle={Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics - Volume 4: ICINCO,},
year={2005},
pages={43-48},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001169200430048},
isbn={972-8865-30-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics - Volume 4: ICINCO,
TI - STATE TRANSFORMATION FOR EULER-LAGRANGE SYSTEMS
SN - 972-8865-30-9
AU - Mabrouk M.
AU - C. Vivalda J.
PY - 2005
SP - 43
EP - 48
DO - 10.5220/0001169200430048