PARAMETRIC OPTIMIZATION FOR OPTIMAL SYNTHESIS - of robotic systems’ motions

Taha Chettibi, Moussa Haddad, Samir Hanchi

Abstract

This paper presents how a problem of optimal trajectory planning, that is an optimal control problem, can be transformed into a parametric optimization problem and in consequence be tackled using efficient deterministic or stochastic parametric optimization techniques. The transformation is done thanks to discretizing some or all continuous system’s variables and forming their time-histories by interpolation. We will discuss three different methods where, in addition to transfer time T, considered optimization parameters are: 1) independent state and control parameters, 2) control parameters and 3) independent position parameters. The simplicity and the efficiency of the third mode allow us to use it to solve the problem of optimal trajectory planning in complex situations, in particular for holonomic and non-holonomic systems.

References

  1. Angeles J., 1997, Fundamentals of robotic mechanical systems. Theory, methods, and algorithms, Springer Edition.
  2. Ascher U. M. & Petzold L. R., 1998, Computer Methods for ordinary differential equations and differentialalgebraic equations, SIAM edition.
  3. Bessonnet, G. 1992. Optimisation dynamique des mouvements point à point de robots manipulateurs. Thèse d'état, Université de Poitiers, France.
  4. Betts, J. T. 1998. Survey of numerical methods for trajectory optimization. Jour. Of Guidance, Cont. and Dyn., 21(2), 193-207.
  5. Bryson A. E., 1999, Dynamic Optimization, Addison Wesley Longman, Inc.
  6. Bicchi A., Pallottino L., Bray M., Perdomi P. , 2001, Randomized parallel Simulation of constrained multibody systems for VR/Haptic applications, Proc. IEEE int. conf. on rob. & Aut., Korea.
  7. Bobrow, J. E., Martin, B. J., Sohl, G., Wang, E. C., Park, F. C., and Kim, J. 2001. Optimal robot motions for physical criteria. Jour. Of Rob. Syst. 18 (12), 785-795.
  8. Chen, Y., and Desrochers, A. 1990. A proof of the structure of the minimum time control of robotic manipulators using Hamiltonian formulation. IEEE Trans. On Rob. and Aut. 6(3), pp388-393.
  9. Chettibi T., H. E. Lehtihet, M. Haddad, S. Hanchi, 2004a, Minimum cost trajectory planning for industrial robots, European Journal of Mechanics/A, pp703-715.
  10. Chettibi T., Haddad M., Rebai S., Hentout A., 2004b, A Stochastic off line planner of optimal dynamic motions for robotic manipulators, 1st Inter. Conf. on Informatics, in Control, Automation and Robotics, Portugal.
  11. Dombre E. & Khalil W., 1999, Modélisation, identification et commande des robots, second edition, Hermes.
  12. Geering, H. P., Guzzella, L., Hepner, S. A. R., and Onder, C. H. 1986. Time-optimal motions of robots in Assembly tasks. IEEE Trans. On Automatic control , Vol. AC-31, N°6.
  13. Haddad M., Chettibi T., Lehtihet H. E. and Hanchi S. 2005. “A new approach for minimum time motion planning problem of wheeled mobile robots”, accepted at the 2005IFAC congress, Prague.
  14. Hull, D. G. 1997. Conversion of optimal control problems into parameter optimization problems, Jour. Of Guidance, Cont. and Dyn., 20(1), 57-62.
  15. Lazrak, M. 1996. Nouvelle approche de commande optimale en temps final libre et construction d'algorithmes de commande de systèmes articulés. Thèse d'état, Université de Poitiers.
  16. Steinbach M.C., 1995, Fast recursive SQP methods for large scale optimal control problem. PhD thesis, Universität Heidelberg.
  17. Stryk, O. V. and Bulirsch R. 1993. Direct and indirect methods for trajectory optimization. Annals of Operations research, Vol 37, pp. 357-373.
  18. Stryk, O. V. 1993, Numerical solution of optimal control problems by direct collocation. Optimal control theory and numerical methods, Int. series of Numerical Mathematics, Vol 111, pp 129-143.
  19. Yamamoto, M., Iwamura M. and Mohri A. (1999). Quasitime-Optimal Motion Planning of Mobile Platforms in the presence of obstacles, Proc. Of 1999 IEEE ICRA, 2958-2962.
Download


Paper Citation


in Harvard Style

Chettibi T., Haddad M. and Hanchi S. (2005). PARAMETRIC OPTIMIZATION FOR OPTIMAL SYNTHESIS - of robotic systems’ motions . In Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics - Volume 4: ICINCO, ISBN 972-8865-30-9, pages 3-10. DOI: 10.5220/0001160700030010


in Bibtex Style

@conference{icinco05,
author={Taha Chettibi and Moussa Haddad and Samir Hanchi},
title={PARAMETRIC OPTIMIZATION FOR OPTIMAL SYNTHESIS - of robotic systems’ motions},
booktitle={Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics - Volume 4: ICINCO,},
year={2005},
pages={3-10},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001160700030010},
isbn={972-8865-30-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Second International Conference on Informatics in Control, Automation and Robotics - Volume 4: ICINCO,
TI - PARAMETRIC OPTIMIZATION FOR OPTIMAL SYNTHESIS - of robotic systems’ motions
SN - 972-8865-30-9
AU - Chettibi T.
AU - Haddad M.
AU - Hanchi S.
PY - 2005
SP - 3
EP - 10
DO - 10.5220/0001160700030010