loading
  • Login
  • Sign-Up

Research.Publish.Connect.

Paper

Authors: Jiri Svancara 1 and Pavel Surynek 2

Affiliations: 1 Charles University, Czech Republic ; 2 National Institute of Advanced Industrial Science and Technology (AIST), Japan

ISBN: 978-989-758-220-2

Keyword(s): Multi-agent Path Finding, A*, Heuristic Function, Multi-commodity Flow, Network Flow, Maximum Flow, Makespan Optimality.

Related Ontology Subjects/Areas/Topics: Agents ; Artificial Intelligence ; Artificial Intelligence and Decision Support Systems ; Distributed and Mobile Software Systems ; Enterprise Information Systems ; Formal Methods ; Informatics in Control, Automation and Robotics ; Intelligent Control Systems and Optimization ; Knowledge Engineering and Ontology Development ; Knowledge-Based Systems ; Mobile Agents ; Multi-Agent Systems ; Planning and Scheduling ; Robot and Multi-Robot Systems ; Simulation and Modeling ; Software Engineering ; State Space Search ; Symbolic Systems

Abstract: We address the problem of optimal multi-agent path finding (MAPF) in this paper. The task is to find a set of actions for each agent in know terrain so that each agent arrives to its desired destination from a given starting position. Agents are not allowed to collide with each other along their paths. Furthermore, a solution that minimizes the total time is required. In this paper we study search-based algorithms that systematically explore state space. These algorithms require a good heuristic function that can improve the computational effectiveness by changing the order in which the states are expanded. We propose such new heuristic, which is based on relaxation of MAPF solving via its reduction to multi-commodity flow over time expanded graph. The multi-commodity flow is relaxed to single commodity flow, which can be solved in polynomial time. We show that our new heuristic is monotone and therefore can be used in search-based algorithms effectively. We also give theoret ical analysis of the new heuristic and compare it experimentally with base-line heuristics that are often used. (More)

PDF ImageFull Text

Download
Sign In Guest: Register as new SCITEPRESS user or Join INSTICC now for free.

Sign In SCITEPRESS user: please login.

Sign In INSTICC Members: please login. If not a member yet, Join INSTICC now for free.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 54.163.168.147. INSTICC members have higher download limits (free membership now)

In the current month:
Recent papers: 1 available of 1 total
2+ years older papers: 2 available of 2 total

Paper citation in several formats:
Svancara J. and Surynek P. (2017). New Flow-based Heuristic for Search Algorithms Solving Multi-agent Path Finding.In Proceedings of the 9th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, ISBN 978-989-758-220-2, pages 451-458

@conference{icaart17,
author={Jiri Svancara and Pavel Surynek},
title={New Flow-based Heuristic for Search Algorithms Solving Multi-agent Path Finding},
booktitle={Proceedings of the 9th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,},
year={2017},
pages={451-458},
doi={},
isbn={978-989-758-220-2},
}

TY - CONF

JO - Proceedings of the 9th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,
TI - New Flow-based Heuristic for Search Algorithms Solving Multi-agent Path Finding
SN - 978-989-758-220-2
AU - Svancara J.
AU - Surynek P.
PY - 2017
SP - 451
EP - 458
DO -

Sorted by: Show papers

Note: The preferred Subjects/Areas/Topics, listed below for each paper, are those that match the selected paper topics and their ontology superclasses.
More...

Login or register to post comments.

Comments on this Paper: Be the first to review this paper.

Show authors

Note: The preferred Subjects/Areas/Topics, listed below for each author, are those that more frequently used in the author's papers.
More...