loading
Documents

Research.Publish.Connect.

Paper

Authors: Alexander Gabel 1 ; Funda Ertas 2 ; Michael Pleger 1 ; Ina Schiering 1 and Sandra Müller 2

Affiliations: 1 Faculty of Computer Science, Ostfalia University of Applied Sciences, Salzdahlumerstraße 46/48, Wolfenbüttel, Germany ; 2 Faculty of Social Work, Ostfalia University of Applied Sciences, Salzdahlumerstraße 46/48, Wolfenbüttel, Germany

ISBN: 978-989-758-398-8

Keyword(s): mHealth, Data Minimization, Privacy by Design, Privacy by Default, Data Aggregation, Metrics, Neuropsychology, Empirical Study.

Abstract: The potential of smart devices as smartphones, smart watches and wearables in healthcare and rehabilitation, so-called mHealth applications, is considerable. It is especially interesting, that these devices accompany patients during their normal life. Hence they are able to track activities and support users in activities of daily life. But beside the benefits for patients, mHealth applications also constitute a considerable privacy and security risk. The central question investigated here is how data about the usage of mobile applications in empirical studies with mHealth technologies can be collected in a privacy-friendly way based on the ideas of Privacy by Design. The context for the proposed approach are neuropsychological studies where a mobile application for Goal Management Training, a therapy for executive dysfunctions, is investigated. There a privacy-friendly concept for collecting data about the usage of the app based on metrics which are derived from research questions is proposed. The main ideas underlying the proposed concept are a decentralized architecture, where only aggregated data is gathered for the study, and a consequent data minimization approach. (More)

PDF ImageFull Text

Download
CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 3.231.220.139

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Gabel, A.; Ertas, F.; Pleger, M.; Schiering, I. and Müller, S. (2020). Privacy-preserving Metrics for an mHealth App in the Context of Neuropsychological Studies.In Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 5: HEALTHINF, ISBN 978-989-758-398-8, pages 166-177. DOI: 10.5220/0008982801660177

@conference{healthinf20,
author={Alexander Gabel. and Funda Ertas. and Michael Pleger. and Ina Schiering. and Sandra Verena Müller.},
title={Privacy-preserving Metrics for an mHealth App in the Context of Neuropsychological Studies},
booktitle={Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 5: HEALTHINF,},
year={2020},
pages={166-177},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0008982801660177},
isbn={978-989-758-398-8},
}

TY - CONF

JO - Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 5: HEALTHINF,
TI - Privacy-preserving Metrics for an mHealth App in the Context of Neuropsychological Studies
SN - 978-989-758-398-8
AU - Gabel, A.
AU - Ertas, F.
AU - Pleger, M.
AU - Schiering, I.
AU - Müller, S.
PY - 2020
SP - 166
EP - 177
DO - 10.5220/0008982801660177

Login or register to post comments.

Comments on this Paper: Be the first to review this paper.